Numerical Optimization Methods for Packing Equal Orthogonally Oriented Ellipses in a Rectangular Domain

Sh. I. Galiev and M. S. Lisafina
Kazan National Research Technological University, ul. Karla Marksa 10, Kazan, 420111 Tatarstan, Russia
e-mail: sh.galiev@mailru, e_marie@mailru
Received February 11, 2013; in final form, May 6, 2013

Abstract

Linear models are constructed for the numerical solution of the problem of packing the maximum possible number of equal ellipses of given size in a rectangular domain R. It is shown that the l_{p} metric can be used to determine the conditions under which ellipses with mutually orthogonal major axes (orthogonally oriented ellipses) do not intersect. In R a grid is constructed whose nodes generate a finite set T of points. It is assumed that the centers of the ellipses can be placed only at some points of T. The cases are considered when the major axes of all the ellipses are parallel to the x or y axis or the major axes of some of the ellipses are parallel to the x axis and the others, to the y axis. The problems of packing equal ellipses with centers in T are reduced to integer linear programming problems. A heuristic algorithm based on the linear models is proposed for solving the ellipse packing problems. Numerical results are presented that demonstrate the effectiveness of this approach.

DOI: 10.1134/S0965542513110080
Keywords: numerical methods for ellipse packing, packing of equal ellipses, linear models for ellipse packing, ellipse packing in rectangular domain, integer linear programming problem.

1. INTRODUCTION

Following publications of other authors, we regard the figure bounded by an ellipse curve as an ellipse, assuming that it is easy to understand from the context whether we mean the curve or the figure. The problem of packing circles, ellipses, squares, rectangles, or other figures in a plane or a given domain, for example, a square, rectangle, triangle, circle, or strip has been extensively studied and various approaches have been developed for its solution (see, for example, [1-5]). The interest in the packing problem and the conceptually related covering problem is motivated primarily by their possible applications in practice. Numerous applications of these problems in economics and engineering can be found in [6-8]. Ellipse packings are also used in the analysis of structures consisting of elliptic molecules in crystals [9], while ellipsoid packings are used to analyze structures of cement solutions [10] (for ellipse packing problems, see also [11-14]).

At present, various models of packing problems are available, in which the packing problem is often reduced to a nonlinear programming problem and, in the case of square or rectangle packing, to a linear programming problem (for the use of linear programming problems, see, e.g., [4]). There is a series of works in which circles are packed in a rectangle (the circle is a special case of an ellipse). Numerous publications are available on packings in a triangular domain, a circular domain, a strip, etc. We do not present a detailed analysis of publications concerning packing problems but indicate only some works where overviews can be found (see, e.g., $[1,2,4,5]$ and the bibliography therein). Additionally, there are studies addressing conceptually related problems of covering shapes by ellipses (see [15, 16]).

Note that the problem of packing figures (for example, circles) is usually stated as packing n circles of maximum possible (previously unknown) diameter in a given domain. In applications, as a rule, the sizes of the figures to be packed are known and the task is to put the maximum possible number of figures in a given domain. We follow the approach to the packing problem when equal ellipses to be packed have given sizes (parameters). Moreover, we consider the case when the major axes of all the ellipses are parallel to the x or y axis or when some ellipses have major axes parallel to the x axis, while the others, to the y axis; i.e., the ellipses are orthogonally oriented. The case of ellipse axes having relative positions other than these is not considered.

In this paper, we propose linear models for the numerical optimization of the number (determining the maximum possible number) of equal ellipses of fixed size that can be packed in a given rectangular domain R.

It is shown that the l_{p} metric can be used to determine the conditions under which ellipses with mutually orthogonal major axes (orthogonally oriented ellipses) do not intersect. In R a grid is constructed whose nodes generate a finite set T of points. It is assumed that the centers of the ellipses can be placed only at some points of T. The packing problems are reduced to integer linear programming problems. A heuristic algorithm based on the linear models is proposed for solving the ellipse packing problems. Numerical results are presented that demonstrate the effectiveness of this approach.

2. FORMULATION OF THE PROBLEM

Assume that a Cartesian coordinate system $x O y$ is introduced in a plane P, and let $d(s, t)$ be the Euclidean distance between points s and t. Let E be an ellipse centered at the point $C(x, y)$ with semimajor and semiminor axes a and b, respectively. Here, a and b are assumed to be parameters of the ellipse. If the major axis of an ellipse is parallel to the x axis, then the ellipse with an indicated center $C(x, y)$ and parameters a and b is denoted by $E(X ; x, y, a, b)$. If the major axis of an ellipse is parallel to the y axis and its center and parameters are the same as before, then the ellipse is denoted by $E(Y ; x, y, a, b)$.

In what follows, we assume that R is a closed rectangular domain in the plane P and the sides of R are parallel to the coordinate axes. A collection of m equal open ellipses $E_{j}, 1 \leq j \leq m$, forms a packing in R if each ellipse E_{j} is contained in $R, 1 \leq j \leq m$, and each point s from R belongs to at most one of these ellipses.

The density of a packing is defined as the ratio of the sum of the areas of all packed ellipses to the area of the figure in which they are packed. The packing density is denoted by p.

Problem Z1. Determine the maximum possible number of equal open ellipses with given parameters that can be packed in a domain R and determine the positions of their axes and centers.

Let $R^{*}\left(R^{*} \subset R\right)$ be the set of all points s from R such that s is the center of an ellipse E contained in R : $E \subset R$. Assume that the set R^{*} is not empty. On R^{*} we construct a rectangular grid with a chosen step Δ in x and y. The nodes of the grid are denoted by $t_{1}, t_{2}, \ldots, t_{n}, n \geq 1$. Let $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, and let each point t_{i}, $1 \leq i \leq n$, belong to R^{*}.

A grid on R^{*} can be constructed in an arbitrary manner or the points of $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ can be specified (chosen) without using a grid or with partial use of grid nodes.

Assume that the set T has been somehow constructed.
Problem Z2. Determine the maximum possible number of equal open ellipses with given parameters a and b centered at some points of T that can be packed in R and determine the positions of their axes and centers.

In what follows, instead of solving problem Z1 on R, we solve some versions of problem Z2. Clearly, the resulting packing gives an approximate solution of problem Z1.

3. TANGENCY CONDITION FOR ELLIPSES WITH MAJOR AXES PARALLEL TO THE x OR y AXIS AND METHODS FOR GRID CONSTRUCTION

The following result can be proved to hold.
Proposition 1. Let $E_{1}(X ; 0,0, a, b)$ and $E^{*}(X ; 0,0,2 a, 2 b)$ be ellipses with indicated parameters centered at the origin. Then any ellipse $E_{2}\left(X ; x_{2}, y_{2}, a, b\right)$ with its center $C_{2}\left(x_{2}, y_{2}\right)$ lying on the curve enclosing $E^{*}(X ; 0$, $0,2 a, 2 b)$ has a unique intersection point with $E_{1}(X ; 0,0, a, b)$.

Corollary 1. Proposition 1 remains valid if the symbol X in the ellipse notation is everywhere replaced by Y.

For brevity, ellipses with major axes parallel to the x axis are referred to as horizontal ellipses, while ellipses with major axes parallel to the y axis are referred to as vertical ellipses.

It is well known that, in the case of an optimal packing of equal circles in the entire plane, the lines passing through their centers generate a skewed grid. One of the grid lines is parallel to the x axis, and the other, to the vector $(1, \sqrt{3})$. For packing circles or ellipses in a bounded set, no results of this type are unknown to the authors. It is natural to assume that a similar skewed grid may also be optimal for ellipses arranged in a staggered manner. By a rectangular grid, we mean one with its generating lines parallel to the coordinate axes.

By applying a more detailed analysis, it can be shown that a rectangular grid is preferable to a skewed grid and that the best strategy for varying the grid step in grid construction is by halving it. Moreover, it can be established that a rectangular grid with different grid steps in the x and y axes is acceptable. Similar results hold for vertical ellipses.

Clearly, there are other methods for constructing a grid, but the indicated ones are rather convenient. In many respects, the shape of the grid depends on the domain G and, in the authors' view, there is no universal method for grid construction in the general case.

4. PACKING OF HORIZONTAL ELLIPSES

Consider ellipses with parameters a and b and with major axes parallel to the x axis. Let R_{x}^{*} be a rectangle lying in $R\left(R_{x}^{*} \subset R\right)$ such that the upper and lower sides of R_{x}^{*} are separated from the corresponding sides of R by a distance of b, while the lateral sides of R_{x}^{*} are separated from the corresponding lateral sides of R by a distance of a. Obviously, R_{x}^{*} is the set of all points $s(x, y)$ from R such that $s(x, y)$ is the center of an ellipse $E(X ; x, y, a, b)$ contained in $R: E(X ; x, y, a, b) \subset R$.

On R_{x}^{*} we construct a rectangular grid, whose nodes are denoted by $t_{x 1}, t_{x 2}, \ldots, t_{x n}, n \geq 1$. Let $T_{x}=$ $\left(t_{x 1}, t_{x 2}, \ldots, t_{x n}\right)$, and let each point $t_{x i}, 1 \leq i \leq n$, belong to R_{x}^{*}. Now we consider problem Z2 assuming that the major axes of the ellipses are parallel to the x axis and the centers of the ellipses can be placed only at some points of T_{x}.

Let C_{i} be the center of the i th ellipse, $1 \leq i \leq N_{x}, 1 \leq N_{x} \leq n$, where N_{x} is the number of ellipses to be packed. Following a well-known method, we introduce the variables

$$
z_{i}= \begin{cases}1 & \text { if the center of } C_{i} \text { coincides with } t_{x i}, \quad 1 \leq i \leq n \tag{1}\\ 0 & \text { otherwise },\end{cases}
$$

Let the center C_{i} of the ellipse $E_{i}\left(X ; x_{i}, y_{i}, a, b\right)$ coincide with the point $t_{x i}\left(x_{i}, y_{i}\right)$; i.e., $z_{i}=1,1 \leq i \leq n$. For E_{i} to be disjoint with the other ellipses to be packed, it is necessary that z_{j} be zero for all points (ellipse centers) $t_{x j}, i \neq j$, lying $E^{*}\left(X ; x_{i}, y_{i}, 2 a, 2 b\right)$. Suppose that there are r_{i} points $t_{x j}, i \neq j, 1 \leq j \leq n$, that lie inside $E^{*}\left(X ; x_{i}, y_{i}, 2 a, 2 b\right)$. Denote by $\operatorname{int}(X)$ the interior of the set X.

The above nonintersection condition for horizontal ellipses can be written as follows:

$$
\begin{equation*}
\text { if } z_{i}=1 \text {, then, for all } j \text { such that } t_{x j} \in \operatorname{int}\left(E^{*}\left(X ; x_{i}, y_{i}, 2 a, 2 b\right)\right) \text { it is true that } z_{j}=0, \quad i \neq j, \quad 1 \leq j \leq n . \tag{2}
\end{equation*}
$$

The following result can be proved.
Proposition 2. The nonintersection condition (2) for horizontal ellipses is equivalent to the condition

$$
\begin{equation*}
r_{i} z_{i}+\sum_{j: t_{x j} \in \operatorname{int}\left(E^{*}\left(X ; x_{i} y_{i}, 2 a, a b\right)\right), i \neq j} z_{j} \leq r_{i} . \tag{3}
\end{equation*}
$$

The satisfaction of condition (2) (or (3)) means that, if the center of an ellipse with parameters a and b is placed at the point $t_{x i}\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, then the center of any other ellipse can be placed only at points $t_{x j}$, $i \neq j, 1 \leq j \leq n$, such that $t_{x j} \notin \operatorname{int}\left(E^{*}\left(X ; x_{i}, y_{i}, 2 a, 2 b\right)\right)$. Therefore, under this condition, open ellipses with parameters a and b centered at $t_{x i}$ and $t_{x j}$ do not intersect.

We introduce the coefficients

$$
a_{i j}= \begin{cases}1, & t_{x j} \in \operatorname{int}\left(E^{*}\left(X ; x_{i}, y_{i}, 2 a, 2 b\right)\right), \quad i \neq j, \quad 1 \leq i, j \leq n, \quad a_{i i}=r_{i}, \quad 1 \leq i \leq n . \\ 0, & t_{x j} \notin \operatorname{int}\left(E^{*}\left(X ; x_{i}, y_{i}, 2 a, a b\right)\right),\end{cases}
$$

Obviously, for given i, condition (2) and, hence, condition (3), can now be written as $a_{i 1} z_{1}+a_{i 2} z_{2}+\ldots+$ $a_{i n} z_{n} \leq r_{i}, 1 \leq i \leq n$.

Let A be an $n \times n$ matrix with elements $a_{i j}$, where $1 \leq i, j \leq n$, and let Z and M_{x} be vectors

$$
Z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)^{\mathrm{T}}, \quad M_{x}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)^{\mathrm{T}} .
$$

Consider the problem

$$
\begin{equation*}
N_{x}=\sum_{i=1}^{n} z_{i} \longrightarrow \max \tag{4}
\end{equation*}
$$

subject to the constraints

$$
\begin{equation*}
A Z \leq M_{x}, \quad z_{i} \in\{0,1\}, \quad 1 \leq i \leq n . \tag{5}
\end{equation*}
$$

This problem is to maximize the number of variables z_{i} taking a value of 1 and such that z_{i} and z_{j} are both equal to 1 if $t_{x i} \notin \operatorname{int}\left(E^{*}\left(X ; x_{j}, y_{j}, 2 a, 2 b\right)\right)$ and $t_{x j} \notin \operatorname{int}\left(E^{*}\left(X ; x_{i}, y_{i}, 2 a, 2 b\right)\right)$. Therefore, the open ellipses centered at the points t_{i} and t_{j} do not intersect. Consequently, problem (4), (5) is to pack in G the maximum possible number of horizontal ellipses with parameters a and b centered at some points of T_{x}. Solving problem (4), (5), we find the number N_{x} of packed ellipses with parameters a and b, while the found values z_{i} determine the positions of the ellipses' centers.

Note that conditions (2) and (3) and the reduction of them to linear constraints were proposed in [17] for the case of circle packing.

5. THE CASE OF ELLIPSES WITH MAJOR AXES PARALLEL TO THE y AXIS

Obviously, if the major axes of all the ellipses are parallel to the y axis, then the argument is similar to the preceding case.

Instead of the rectangle R_{x}^{*}, we construct a rectangle R_{y}^{*} lying inside $R\left(R_{y}^{*} \subset R\right)$ such that the upper and lower sides of R_{y}^{*} are separated from the corresponding sides of R by a distance of a, while the lateral sides of R_{y}^{*} are separated from the corresponding lateral sides of R by a distance of b. Obviously, R_{y}^{*} is the set of all points $s(x, y)$ from R such that $x(x, y)$ is the center of a vertical ellipse $E(Y ; x, y, a, b)$ contained in $R: E(Y ; x, y, a, b) \subset R$. On the set R_{y}^{*}, we construct a rectangular grid. The grid nodes form a set $T_{y}=$ $\left\{t_{y 1}, t_{y 2}, \ldots, t_{y m}\right\}$, where m is the number of elements in T_{y}; moreover, each point $t_{y i}, 1 \leq i \leq m$, belongs to R_{y}^{*}. Now we consider and solve problem Z2 assuming that the centers of the vertical ellipses to be packed can be placed only at some points of T_{y}. Let C_{i} be the center of an ellipse. We introduce the variable

$$
v_{i}=\left\{\begin{array}{ll}
1 & \text { if the center of } C_{i} \text { coincides with } t_{y i}, \\
0 & \text { otherwise },
\end{array} \quad 1 \leq i \leq m\right.
$$

Suppose that there are s_{i} points $t_{y j}, i \neq j, 1 \leq j \leq n$, that are inside the ellipse $E^{*}\left(Y ; x_{i}, y_{i}, 2 a, 2 b\right)$. Define the coefficients

$$
b_{i j}=\left\{\begin{array}{ll}
1, & t_{y j} \in \operatorname{int}\left(E^{*}\left(Y ; x_{i}, y_{i}, 2 a, 2 b\right)\right), \\
0, & t_{y j} \notin \operatorname{int}\left(E^{*}\left(Y ; x_{i}, y_{i}, 2 a, 2 b\right)\right),
\end{array} \quad i \neq j, \quad 1 \leq i, j \leq m, \quad a_{i i}=s_{i}, \quad 1 \leq i \leq m .\right.
$$

They generate an $m \times m$ matrix, which is denoted by B.
Let V and M_{y} be vectors $V=\left(v_{1}, v_{2}, \ldots, v_{m}\right)^{\mathrm{T}}$ and $M_{y}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)^{\mathrm{T}}$. Consider the problem

$$
\begin{equation*}
N_{y}=\sum_{i=1}^{m} v_{i} \longrightarrow \max \tag{6}
\end{equation*}
$$

subject to the constraints

$$
\begin{equation*}
B V \leq M_{y}, \quad v_{i} \in\{0,1\}, \quad 1 \leq i \leq m . \tag{7}
\end{equation*}
$$

This problem is to maximize the number of variables v_{i} taking a value of 1 and such that v_{i} and v_{j} are both equal to 1 if $t_{y i} \notin \operatorname{int}\left(E^{*}\left(Y ; x_{j}, y_{j}, 2 a, 2 b\right)\right)$ and $t_{y j} \notin \operatorname{int}\left(E^{*}\left(Y ; x_{i}, y_{i}, 2 b, 2 b\right)\right)$. Therefore, the open vertical ellipses centered at the points $t_{y i}$ and $t_{y j}$ do not intersect. Therefore, problem (6), (7) is to pack in R the maximum possible number of vertical ellipses with parameters a and b centered at some points of T_{y}.

6. TANGENCY CONDITIONS FOR ELLIPSES WITH MUTUALLY ORTHOGONAL MAJOR AXES

Let E_{1} and E_{2} be ellipses whose major axes are mutually orthogonal. As is known, the determination of intersection points of arbitrary ellipses is generally reduced to solving fourth-degree equations. We try to avoid the solution of such an equation and the enumeration of its roots.

Let E_{1} and E_{2} be two ellipses with a tangency point F. Assume that their semimajor and semiminor axes are a and b, respectively, and their major axes are mutually orthogonal. Moreover, let $a+b$ be a constant: $a+b=$ const. Let C_{1} and C_{2} be the centers of E_{1} and E_{2}, respectively. If the eccentricities of the ellipses are zero $\left(e_{1}=e_{2}=0(a=b)\right.$), i.e., E_{1} and E_{2} are circles, then C_{2} obviously lies on the circle of radius $r=2 a$ ($r=a+b$) centered at C_{1}. Denote this circle by W. In the degenerate case, when the eccentricities of the ellipses are equal to unity, the center of E_{2} (when E_{1} and E_{2} have a tangency point) obviously lies on the boundary of the square G with sides parallel to the coordinate axes and with side length $4 a$. If the value of the eccentricity e is other than 0 or 1, then, as the tangency point F of the ellipses move along the boundary of E_{1}, the center C_{2} of E_{2} describes a curve S contained between W and G.

Let L be the ray starting at the center C_{1} of E_{1} and passing through the center C_{2} of E_{2}, and let α be the angle between the $O x$ axis and L. If α varies, then, according to computations, $\left[d\left(C_{1}, C_{2}\right)-r\right]$ increases, reaching its maximum at $\alpha=\pi / 4$, and then decreases to zero at $\alpha=\pi / 2$; next, the pattern is repeated. Thus, the tangency point of two equal ellipses with mutually orthogonal major axes cyclically approaches W and G and moves away from them. Interestingly, similar behavior is exhibited by points of "circles" generated by the l_{p} metric. Following a well-known procedure, the distance between arbitrary points s and l is defined as

$$
d_{p}(s, t)=\left[\left|x_{s}-x_{t}\right|^{p}+\left|y_{s}-y_{t}\right|^{p}\right]^{1 / p}, \quad 2 \leq p<\infty ; \quad d_{p}(s, t)=\max \left(\left|x_{s}-x_{t}\right|,\left|y_{s}-y_{t}\right|\right), \quad p=\infty .
$$

For $p=2$, this is the usual Euclidean distance and $d_{p}(s, t)=r$ is the equation of a circle of radius r centered, for example, at the point $s\left(x_{s}, y_{s}\right)$; moreover, if $r=a+b$, then the point $t\left(x_{t}, y_{t}\right)$ lies on the circle W. For $p=\infty$, the equation $d_{p}(s, t)=r$ defines a square G centered at $s\left(x_{s}, y_{s}\right)$ with sides parallel to the coordinate axes and with side length $4 a$. When $2<p<\infty$, the equation $d_{p}(s, t)=r$ with fixed s generates curves S_{p} lying between W and G. Relying on this analogy, we approximate S by a curve S_{p}.

In the special case of $\alpha=\pi / 4+k \pi / 2$, where k is an integer, the tangency point of E_{1} and E_{2} is fairly easy to find; for example, for $\alpha=-\pi / 4$, the coordinates of the tangency point are given by

$$
x=\frac{a^{2} c}{a^{2}+b^{2}}, \quad y=x-c=\frac{a^{2} c}{a^{2}+b^{2}}+\sqrt{a^{2}+b^{2}}
$$

In cases other than those indicated above, the tangency points of the ellipses can be found as follows. Let F be a tangency point of E_{1} and E_{2}. Given one of the coordinates of the center C_{2} of E_{2}, say, x_{2}, the other coordinate of C_{2} in the case of $-\pi / 2 \leq \alpha \leq 0$ can be found by solving the nonlinear programming problem

$$
\begin{gathered}
y_{2} \longrightarrow \min , \\
\left(x-x_{2}\right)^{2} / b^{2}+\left(y-y_{2}\right)^{2} / a^{2}=1, \quad x^{2} / a^{2}+y^{2} / b^{2}=1, \quad y_{2}<0, \quad x_{2}=\text { const }, \quad 0 \leq x_{2} \leq a+b .
\end{gathered}
$$

A similar strategy is used for other values of α. As a result, we find the coordinates of tangency points for arbitrary values of α.

Now let us choose a parameter p. Choosing a position of the center C_{2} of E_{2} (assuming that E_{2} is tangent to E_{1}), we draw the ray L starting at C_{1} and passing through C_{2}. Therefore, C_{2} lies on the curve S. Let C_{3} be an intersection point of S_{p} and L lying further away from C_{1} than the point C_{2}. The value of p is chosen so that C_{3} is as close as possible to C_{2}; in other words, the curve S_{p} is as close as possible to S (on L), i.e., $d_{p}\left(C_{1}, C_{2}\right) \approx(a+b)$. With a prescribed accuracy with respect to p, the value of p is chosen as follows. Starting with a chosen $p_{0}\left(p_{0} \geq 2\right), p$ is increased with the step Δp so that the ratio $q=d_{p}\left(C_{1}, C_{2}\right) /(a+b)$ with the new p is larger than unity, while, with the preceding value of p (equal to $p-\Delta p$), this ratio is less than or equal to unity. The resulting p is used as its desired value. It ensures that the intersection point $\left(C_{3}\right)$ of the ray l and the curve S_{p} is farther away from C_{1} than from C_{2} (according to the Euclidean distance). Therefore, if the center of E_{2} lies at C_{3}, the ellipses centered at C_{1} and C_{3} do not intersect. At different angles between L and the $O x$ axis, we can obtain different values of p. For example, at the eccentricity $e=$

Fig. 1. Curves S and S_{p}.
0.86603 , the parameter p for different angles α ranges from 2.145 to 2.354 . Clearly, if we choose the largest value of p for various inclination angles of L, then, for each L, its intersection point with S_{p} (the point C_{3}) is father from C_{1} than from C_{2}. Consequently, if the center of E_{2} lies on S_{p}, the ellipses E_{1} and E_{2} do not intersect.

In this paper, we obtained sets of coordinates x_{2} and y_{2} of the point C_{2} for different values of a and b. Figure 1 shows the curves S constructed for ellipses with parameters $a=2, b=1 ; a=2.2, b=0.8$; and $a=2.6, b=0.4$ and the curves S_{p} (dashed) in the case of $x \geq 0$ and $y \leq 0$. Additionally, the figure presents part of the circle W of radius $a+b$. When the eccentricity of the ellipse does not exceed 0.86603 , the curves S and S_{p} nearly coincide, while in the cases, for example, $e=0.93154$ and $e=0.98808$, the curves S_{p} are some distance away from S, as can be seen in Fig. 1. The distance between S and S_{p} can be found as the distance between the points C_{2} and C_{3} for a chosen angle between L and the x axis. The longest distance for chosen ellipse parameters is denoted by γ. Table 1 gives the resulting values of p and γ for various ellipse parameters. Note that, for ellipses with a given eccentricity, p is chosen once and the resulting value of p is then used for all ellipse packing problems of this type in various rectangular domains.

7. PACKING ELLIPSES SOME OF WHICH HAVE ORTHOGONAL MAJOR AXES (ORTHOGONALLY ORIENTED ELLIPSES)

Assume that sets T_{x} and T_{y} have been constructed. Although some of the points $t_{x i}$ and $t_{y j}$ may coincide, we retain the double notation for them, since the coincidence of the center of an ellipse with $t_{x i}$ means that its major axis is parallel to the x axis, while the coincidence with $t_{y j}$ means that its major axis is parallel to the y axis.

Table 1. Values of the parameter p

Parameters a / b	Eccentricity e	Parameter p	γ
$1.6 / 1.4$	0.48412	2.01300	0.00200
$1.8 / 1.2$	0.74536	2.1200	0.00722
$2 / 1$	0.86603	2.35900	0.01957
$2.2 / 0.8$	0.93154	2.79500	0.03813
$2.4 / 0.6$	0.96825	3.59500	0.06007
$2.6 / 0.4$	0.98809	5.27500	0.07942

For ellipse packing, we have to take into account the nonintersection condition for ellipses with major axes parallel to the x axis. This condition is written as $A Z \leq M_{x}$ (see (5)). Then we take into account the nonintersection conditions for ellipses with major axes parallel to the y axis: $B V \leq M_{y}$ (see (7)). Next, the nonintersection conditions for ellipses with mutually orthogonal major axes are taken into account.

The nonintersection conditions for horizontal and vertical ellipses are written in the form of conditions similar to (3). Each horizontal ellipse cannot intersect each vertical ellipse. In Section 4, we used the fact that the center $t_{i}\left(x_{i}, y_{i}\right)$ of the ellipse $E\left(X, x_{i}, y_{i}, a, b\right)$ is not an interior point of the ellipse $E\left(X, x_{j}, y_{j}, 2 a, 2 b\right)$ centered at $t_{j}\left(x_{j}, y_{j}\right)$, while now we use the distance $d_{p}\left(t_{i}, t_{j}\right)$ with a chosen parameter p. The conditions under which vertical ellipses do not intersect horizontal ones are written in a similar manner.

Let the center of an ellipse E_{i} be at the point $t_{x i}$; i.e., this is a horizontal ellipse. Assume that $t_{y j}$ is the center of a vertical ellipse E_{j}. According to Section 6, these ellipses do not intersect if the distance between $t_{x i}$ and $t_{y j}$ based on the found p-metric is at least $a+b$.

Suppose that, for $t_{x i}$, there are q_{i} points $t_{y j}$ for which $d_{p}\left(t_{x i}, t_{y j}\right)<a+b, 1 \leq i \leq n$. The coefficients $c_{i j}$ are defined in a similar fashion to the coefficients $a_{i j}$ for constraints (5):

$$
\begin{gather*}
c_{i j}= \begin{cases}1, & d_{p}\left(t_{x i}, t_{y j}\right)<a+b, \quad i=1, \ldots, n, \quad j=1, \ldots, m, \\
0 & \text { otherwise },\end{cases} \tag{8}\\
c_{i, i+m}=q_{i}, \quad 1 \leq i \leq n, \quad c_{i j}=0, \quad 1 \leq i \leq n, \quad m+1 \leq j \leq m+n, \quad j \neq i+m .
\end{gather*}
$$

Remark 1. The determination of the coefficients $c_{i j}$ assumes that p is known (determined). When the ellipse eccentricity is, for example, 0.86603 , the distance between the centers of the ellipses measured along the line L differs from $d_{p}\left(t_{x i}, t_{y j}\right)$ by at most $\gamma=0.02$ (see Table 1). If this accuracy (γ) is satisfactory, then p can be set to a value from Table 1. Otherwise, for each slope of the line L (for pairs of points $t_{y j}$ and $t_{x i}$), its own value of p has to be chosen.

From the coefficients $c_{i j}, 1 \leq i \leq n, m+1 \leq j \leq m+n$, we can construct an $n \times(m+n)$ matrix C. Define the vectors $V Z=\left(v_{1}, \ldots, v_{m}, z_{1}, \ldots, z_{n}\right)^{\mathrm{T}}$ and $M_{V z}=\left(q_{1}, \ldots, q_{n}\right)^{\mathrm{T}}$. The constraints are constructed taking into account that some of $c_{i j}$ vanish (see (8)):

$$
\left(\begin{array}{ccccccc}
c_{11} & c_{12} & \ldots & c_{1 m} & c_{1, m+1} & 0 & \ldots \tag{9}\\
c_{21} & c_{22} & \ldots & c_{2 m} & 0 & c_{2, m+2} & \ldots \\
0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m} & 0 & 0 & \ldots \\
c_{n, n+m}
\end{array}\right)\left(\begin{array}{c}
V_{1} \\
\ldots \\
V_{m} \\
z_{1} \\
\ldots \\
z_{n}
\end{array}\right) \leq\left(\begin{array}{c}
q_{1} \\
q_{2} \\
\ldots \\
q_{n}
\end{array}\right)
$$

Inequalities (9) are the conditions under which any possible horizontal ellipse does not intersect any possible vertical ellipse.

Now suppose that the center of an ellipse E_{i} coincides with the point $t_{y i}$. Let us derive the conditions under which E_{i} does not intersect ellipses E_{j} with major axes being orthogonal to that of E_{i}. For this purpose, we again use the distance $d_{p}\left(t_{y i}, t_{x j}\right)$. Suppose that, for the point $t_{y i}$, there are l_{i} points $t_{x j}$ for which $d_{p}\left(t_{y i}, t_{x j}\right)<a+b, 1 \leq i \leq m$. Define the coefficients

$$
\begin{align*}
& \quad h_{i j}=\left\{\begin{array}{ll}
1, & d_{p}\left(t_{y i}, t_{x j}\right)<a+b, \\
0 & \text { otherwise },
\end{array} \quad i=1, \ldots, m, \quad j=1, \ldots, n,\right. \tag{10}\\
& h_{i, i+n}=l_{i}, \quad 1 \leq i \leq m, \quad h_{i j}=0, \quad 1 \leq i \leq m, \quad n+1 \leq j \leq n+m, \quad j \neq i+n .
\end{align*}
$$

When determining $h_{i j}$, we have to take into account Remark 1. These coefficients $m \times(n+m)$ are used to construct a matrix H. Define the vectors $Z V=\left(z_{1}, \ldots, z_{n}, v_{1}, \ldots, v_{m}\right)^{\mathrm{T}}$ and $M_{z v}=\left(l_{1}, \ldots, l_{m}\right)^{\mathrm{T}}$.

Fig. 2. Introduction of weights of the levels.

The constraints are constructed taking into account the fact that some of $h_{i j}$ vanish (see (10)):

$$
\left(\begin{array}{cccccccc}
h_{11} & h_{12} & \ldots & h_{1 n} & h_{1, n+1} & 0 & \ldots & 0 \tag{11}\\
h_{21} & h_{22} & \ldots & h_{2 n} & 0 & h_{2, m+2} & \ldots & 0 \\
\ldots & \ldots \\
h_{m 1} & h_{m 2} & \ldots & h_{m, n} & 0 & 0 & \ldots & h_{m, m+n}
\end{array}\right)\left(\begin{array}{c}
z_{1} \\
\ldots \\
z_{n} \\
v_{1} \\
\ldots \\
v_{m}
\end{array}\right) \leq\left(\begin{array}{c}
l_{1} \\
l_{2} \\
\ldots \\
l_{m}
\end{array}\right)
$$

Inequalities (11) are the conditions under which any possible vertical ellipse does not intersect any possible horizontal ellipse. Clearly, if conditions (9) hold, then conditions (11) hold as well and vice versa. The choice of conditions (9) or (11) depends on the number of their rows, if we want to reduce the number of constraints.

Now the packing problem for ellipses some of them have major axes parallel to the x axis, while the others, to the y axis, has the form

$$
\begin{equation*}
z_{1}+\ldots+z_{n}+v_{1}+\ldots+v_{m} \longrightarrow \max \tag{12}
\end{equation*}
$$

subject to the constraints

$$
\begin{gather*}
A Z \leq M_{x}, \quad B V \leq M_{y} \\
C(V Z) \leq M_{v z} \quad \text { or } \quad H(Z V) \leq M_{z v}, \tag{13}\\
z_{i} \in\{0,1\}, \quad 1 \leq i \leq n, \quad v_{j} \in\{0,1\}, \quad 1 \leq j \leq m .
\end{gather*}
$$

8. ALGORITHM FOR PACKING ELLIPSES IN A GIVEN DOMAIN

Problems (4), (5); (6), (7); and (12), (13) are integer linear programming problems. Obviously, they can be solved using any method (algorithm) for integer linear programming problems if it can be implemented in an acceptable time. For high dimensions (large numbers of variables), the solution of such problems by applying well-known methods is too expensive (frequently unacceptably) in terms of CPU time. For this reason, we propose a heuristic algorithm based on a natural stage-by-stage packing procedure. Specifically, the algorithm first packs a few (possibly, three or four) layers of ellipses. Then another few are packed taking into account the constructed packing, etc.

Before describing this heuristic algorithm, we present some auxiliary arguments. Consider the problem of packing the maximum possible number of open equal horizontal ellipses with parameters $a=0.45$ and $b=0.3$ into a rectangle R of width 1.8 and height 0.9 . Obviously, two such ellipses can be packed in R. This solution can be obtained by constructing a model of form (4), (5). Let the step for grid construction in x and y be $\Delta=0.3$. Then the set T consists of eight points: $T=\left\{t_{1}, t_{2}, \ldots, t_{8}\right\}$ (see Fig. 2). Problem (4), (5) is written as

$$
\begin{equation*}
N_{1}=z_{1}+z_{2}+z_{3}+z_{4}+z_{5}+z_{6}+z_{7}+z_{8} \longrightarrow \max \tag{14}
\end{equation*}
$$

with constraints (5) constructed for the above set T and chosen ellipses parameters. Solving this problem, we find that the largest N_{1} is equal to 2 and the centers of the ellipses can be placed at the points t_{1} and t_{4}, t_{1} and t_{8}, t_{4} and t_{5}, or t_{5} and t_{8}.

If we want the packed ellipses to be as low as possible (in R), the model has to be changed. Specifically, we assume that the points t_{1}, t_{2}, t_{3}, and t_{4} are at the second level, while the points t_{5}, t_{6}, t_{7}, and t_{8} are at the first level. The levels are indexed from bottom to top. Points placed at the same level have identical coordinates y. We want the centers of the ellipses to be as low as possible. For this reason, the variables corresponding to the points at the first level are multiplied by a constant (weight) c_{1} that is larger than the weight c_{2} used to multiply the variables at the second level. Let $c_{1}=2$ and $c_{2}=1$. Then instead of (14), we write

$$
\begin{equation*}
N_{2}=z_{1}+z_{2}+z_{3}+z_{4}+2 z_{5}+2 z_{6}+2 z_{7}+2 z_{8} \longrightarrow \text { max. } \tag{15}
\end{equation*}
$$

Solving problem (15) with the same constraints as above, we find that the largest value N_{2} is 4 and the centers of two ellipses can be placed only at the points t_{5} and t_{8}. Thus, by choosing weights of the levels, we ensured that the centers of the ellipses are as low as possible. Clearly, a similar pressing down procedure can be applied to other rectangles and other ellipses, since the constraints of the problem ensure that the ellipses do not intersect and, if an ellipse can be placed lower, then the objective function value increases; i.e., due to the level weights introduced, the ellipses are shifted down whenever possible.

Now we find out the effect that can be achieved by introducing certain subsets of the set R.
First, consider the case of packing horizontal ellipses. Suppose that the coordinates y of points from R satisfy the condition $\alpha \leq y \leq \beta$, while the coordinates y of points from R^{*} satisfy $\alpha^{*} \leq y \leq \beta^{*}$; here, R^{*} is the set of possible positions of the ellipse centers in R. Let α_{1} be chosen so that $\alpha_{1} \geq \alpha^{*}+4 r$ and $\alpha_{1} \leq \beta$, where r is the semiaxis parallel to the y axis: for horizontal ellipses, $r=b$ (while for vertical ellipses, $r=a$). The set $D_{\alpha 1}$ is defined as the subset of R that lies below the line $y=\alpha_{1}$. For $D_{\alpha 1}$, we construct $D_{\alpha 1}^{*}$ in a similar manner to the construction of the set R^{*} for R : $D_{\alpha 1}^{*}$ contains a point s from $D_{\alpha 1}$ if and only if the open ellipse centered at s is contained in $D_{\alpha 1}$. Next, on $D_{\alpha 1}^{*}$ we construct a grid whose nodes generate the set $T_{\alpha 1}=\left\{t_{1}, t_{2}, \ldots, t_{n 1}\right\}$. Points t_{j} with identical coordinates $y_{j}, 1 \leq j \leq n 1$, are thought of as lying at the same level. The set $T_{\alpha 1}=\left\{t_{1}, t_{2}, \ldots, t_{n 1}\right\}$ constructed for $D_{\alpha 1}^{*}$ may contain points lying at k levels, where $k \geq 1$ and the levels are indexed from bottom to top. We introduce k weights of these levels: $c_{1} \geq c_{2} \geq \ldots \geq c_{k}$, where c_{j} is the weight of the j th level. In the objective function, the variables z_{j} are multiplied by the weight of the level that contains the point $t_{j}, 1 \leq j \leq n 1$. As a result, we obtain a new objective function, while the constraints are constructed in the same way as for problem (4), (5) but with the set $D_{\alpha 1}$. The resulting problem with allowance for the level weights is regarded as an auxiliary problem, and its solution is regarded as a solution for the set $D_{\alpha 1}$. As a result, for $D_{\alpha 1}$, we obtain an ellipse packing in $D_{\alpha 1}, D_{\alpha 1} \subseteq R$, which is denoted by $P_{\alpha 1}$.

Suppose that $D_{\alpha(i-1)}$ has been constructed and a packing $P_{\alpha(i-1)}$ has been found on it. Let Δ be the step for grid construction in y. The boundary of the set $D_{\alpha i}(i \geq 2)$ consists of

- the segments of the lines $y=\alpha_{i}$ and $y=\alpha_{i-1}-2 r-\Delta$, contained in R;
- the portions of the boundary of R lying between these lines;
- if, above the line $y=\alpha_{i-1}$, there is no similar line, then the boundary of $D_{\alpha i}$ consists of the segment of the line $y=\alpha_{i-1}-2 r-\Delta$ contained in R and of the boundary of R lying above the line $y=\alpha_{i-1}-2 r-\Delta$.

The set $D_{\alpha i}^{*}$ consists of points s from $D_{\alpha i}$ that are a distance of b away from the horizontal boundaries of $D_{\alpha i}$ and a distance of a away from its vertical boundaries and additionally satisfy the following conditions: for any ellipse $E\left(X, x_{j}, y_{j}, a, b\right)$ from $P_{\alpha(i-1)}$, it is true that $s \notin \operatorname{int} E\left(X, x_{j}, y_{j}, 2 a, 2 b\right)$. Here, $P_{\alpha(i-1)}$ is the packing obtained at the preceding level. Therefore, the construction of $D_{\alpha i}^{*}, 1<i \leq g$, makes use of the packing $P_{\alpha(i-1)}$ constructed for the subset $D_{\alpha(i-1)}$. Next, on $D_{\alpha i}^{*}$, a grid is constructed whose nodes generate a set $T_{\alpha i}$. The latter is used to construct an auxiliary problem with allowance for the level weights. Solving this problem yields a packing $P_{\alpha i}$ for the subset $D_{\alpha i}$.

For chosen grid steps, suppose that, for R, a set R^{*} is found, a grid is constructed on R^{*}, and its nodes are used to construct a set T. Assume that, on each level of the set $D_{\alpha i}$, identical grid steps are chosen and the corresponding sets $T_{\alpha i}, 1 \leq i \leq g$ are constructed stage by stage. Let n be the number of elements in T

No. 11
2013
and n_{i} be the number of elements in $T_{\alpha i}, 1 \leq i \leq g$. It is important that each $n_{i}(1 \leq i \leq g)$ be less than n and, additionally, the sum of all n_{i} be also less than n. Thus, the dimensions of the auxiliary problems for $D_{\alpha i}$ are lower than the dimension of problem (4), (5) for the entire set R.

For vertical ellipses, the procedure is similar to that described above, while, for ellipses with differently oriented major axes, the procedure has to take into account the nonintersection conditions for horizontal and vertical ellipses and ones with mutually orthogonal major axes.

If the number n of variables (dimension) of problem (4), (5); (6), (7); or (12), (13) does not exceed n^{*}, then the chosen problem is regarded as solvable in an acceptable time. If $n>n^{*}$, then we use the following algorithm.

Algorithm

1. On the domain R, construct $g(g \geq 2)$ subsets $D_{\alpha i}, 1 \leq i \leq g$, such that the auxiliary problems constructed for them have an acceptable dimension.
2. Sequentially solve the auxiliary problems for each subset, starting from $D_{\alpha 1}$, to obtain packings in these subsets. The union of the resulting packings for the subsets $D_{\alpha i}, 1 \leq i \leq g$, is regarded as the solution of the packing problem for R. Complete the procedure.

Obviously, the packings for individual subsets $D_{\alpha i}, 1 \leq i \leq g$, are not independent. The solution for each subset, starting from the second, depends on the solutions obtained for the preceding subsets. However, even if an optimal packing is obtained for each subset, it does not mean that the resulting packing is optimal. Nevertheless, the numerical computations performed have shown that the algorithm produces acceptable results in an acceptable time. In other words, the algorithm can be viewed as effective.

The parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{g-1}$ of the algorithm, which determine the subsets $D_{\alpha i}, 1 \leq i \leq g$, are chosen at the initial stage so that the auxiliary problems are solvable in an acceptable time. For packing horizontal ellipses, the values of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m-1}$ can be optimized as follows. Given α_{1} and a set $D_{\alpha 1}$, problem (4), (5) is solved without introducing level weights. As a result, we obtain a packing of, say, q_{1} ellipses in $D_{\alpha 1}$, $D_{\alpha 1} \subseteq R$. Gradually reducing α_{1}, we find its smallest value (with the prescribed accuracy) at which the number of packed ellipses remains equal to q_{1}. Before selecting the next value α_{2}, for $D_{\alpha 1}$ (with chosen α_{1}), we need to solve an auxiliary problem with level weights, so that the ellipses are placed as low as possible, while their number remains equal to q_{1}. Next, α_{2} is refined, etc.

The level weights for $D_{\alpha j}, 1 \leq j \leq g$, are chosen according to the formula $c_{j i}=1+\tau\left(\alpha_{j}-y_{i}\right), 1 \leq i \leq l_{j}$, where $c_{j i}$ is the weight of the i th level in $D_{\alpha j}$, τ is a tuning parameter, α_{j} is a parameter determining the subset $D_{\alpha j}$, y_{j} is the y coordinate of the i th level in $D_{\alpha j}, l_{j}$ is the number of levels in $D_{\alpha j}$ (the levels are indexed from bottom to top), and $1 \leq j \leq g$. The value of τ is chosen from the interval [$0.1,0.35]$.

For vertical ellipses and ellipses with mixed orientations, the values of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{g-1}$ are optimized in a similar fashion to the case of horizontal ellipses.

9. NUMERICAL RESULTS

Ellipses were packed in a square Q with a side length of 3 and in a rectangle R with a width of 3 and height of 6 units. Thus, R was formed of two squares Q one placed on top of the other. The side length of the square was set to three, because, in some of the cases considered in this paper, the radius r of circles packed in Q was such that, when divided by 3 , it gave the best known radius of circles packed into a unit square. Clearly, setting a radius of 0.5 for the circles to be packed in Q is more natural than setting a radius of 0.1666 (with 6 repeating) for packing in a unit square. Equal ellipses with various parameters were packed in Q and R.

To optimize packing, we developed a special software code using the library CPLEX 11.2, which makes it possible to solve problems of the indicated types. The code optimizes packings of (1) only horizontal ellipses, (2) only vertical ellipses, or (3) orthogonally oriented ellipses. In all three cases, we found the maximum possible number of ellipses with given parameters that can be packed in a given figure and determined the positions of the ellipses' centers and orientations (horizontal or vertical). Since the maximum possible number of all ellipses was found, it was possible in the third case that all ellipses were either horizontal or vertical or there were ellipses of both types.

The computations were performed on an Intel Core 2 Duo CPU T7300 2.00 GHz computer with 2 GB RAM run under Windows XP.
Table 2. Packings of ellipses in the square Q and the rectangle R

$\begin{aligned} & \text { Ellipse } \\ & \text { parameters } \\ & a / b \end{aligned}$	Radius of circle r	Shape to be packed in	Circle packing		Ellipse packing		
			Number of circles/density n / p	Best available packings of circles of radius $r / 3$ in unit square n^{*} / p^{*}	Number of horizontal ellipses/density n_{g} / p_{g}	Number of vertical ellipses/density n_{V} / p_{V}	Number of ellipses with differently oriented axes/density
0.68892/0.45928	0.5625	Q	6/0.663	6-7/0.664-0.669	6/0.663		6/0.663
		R	13/0.718		12/0.663	12/0.663	$\begin{aligned} & 13=3 g+10 v / 0.718 \text { or } \\ & 13=4 g+9 v / 0.718 \end{aligned}$
0.61237/0.40825	0.5	Q	9/0.785	9/0.785	7/0.611		$8=2 g+6 v / 0.698$
		R	18/0.785		15/0.654	16/0.698	$16=0 g+16 v / 0.698$
0.45928/0.30619	0.375	Q	16/0.785	16/0.785	14/0.657		$14=14 g+0 \mathrm{~V} / 0.687$
		R	32/0.785		28/0.687	30/0.736	$30=0 g+30 \mathrm{v} / 0.736$
0.38273/0.25515	0.3125	Q	22/0.750	$24-25 / 0.775-0.785$	21/0.716		$21=21 g+0 \mathrm{~V} / 0.736$
		R	45/0.767		45/0.767	45/0.767	$45=24 g+21 v / 0.767$
0.33681/0.22454	0.275	Q	28/0.739	30/0.792	27/0.713		$28=11 g+17 v / 0.739$
		R	61/0.805		54/0.713	56/0.739	$56=0 g+56 v / 0.739$
0.30619/0.20412	0.25	Q	$36 / 0.785$	36/0.785	$31 / 0.676$		$\begin{aligned} & 33=4 g+29 \mathrm{v} / 0.719 \text { or } \\ & 33=16 g+17 \mathrm{v} / 0.753 \end{aligned}$
		R	74/0.807		69/0.75	65/0.71	$69=69 g+0 \mathrm{v} / 0.753$

Fig. 3. Packings in R of (a) 13 circles, (b) 12 horizontal ellipses pressed down, (c) 12 vertical ellipses, (d) 4 horizontal and 9 vertical ellipses, (e) 3 horizontal and 10 vertical ellipses, and (f) 12 horizontal ellipses pressed up or down.

The resulting packings of ellipses were evaluated as follows. For a given r, we packed the maximum possible number of equal circles of radius r in Q. The resulting packing was compared with the best available packing of circles of radius $r / 3$ in a unit square. The best available packing densities for circles in a unit square were denoted by p^{*}, while the known largest numbers of packed circles were denoted by n^{*}. For a given ellipse eccentricity, the ellipse parameters a and b were calculated so that the area of the ellipse coincided with the area of a circle of radius r. Next, the packing densities for ellipses and circles (with identical areas) were compared.

Table 2 presents the numerical results obtained for Q and R with various ellipse parameter at the fixed eccentricity $e=0.74536$. Here, the slash symbol (/) is used to separate the results. The following characteristics are given In Table 2:

- The first column contains the semimajor and semiminor axes of the ellipses.
- The second column gives the radii of circles having the same area as that of an ellipse with parameters indicated in the given line.
- The third column specifies the figures into which ellipses and circles were packed; the results for Q and R are given in the corresponding lines.
- The fourth column contains the resulting numbers of packed circles of radius r and the corresponding packing densities (n / p).

Fig. 4. Packings in R of (a) 45 circles, (b) 45 horizontal ellipses, (c) 45 vertical ellipses, and (d) 24 horizontal and 21 vertical ellipses.

- The fifth column gives the known maximum possible numbers of circles of radius $r / 3$ that can be packed in a unit square and the corresponding packing densities (n^{*} / p^{*}).
- The sixth column presents the resulting numbers $\left(n_{g}\right)$ of packed horizontal ellipses and the corresponding packing density $\left(p_{g}\right)$.
- The seventh column contains the resulting numbers $\left(n_{v}\right)$ of packed vertical ellipses and the corresponding packing densities $\left(p_{v}\right)$; for packings in Q, the results of this column coincide with those of the preceding column and, for this reason, are omitted.
- The eighth column gives the resulting numbers of packed orthogonally oriented ellipses and the corresponding packing densities.

Note that the numbers of packed ellipses obtained with and without the heuristic (in the latter case, if that was possible on our computer) turned out to be identical, but the CPU times were usually widely different.

Inspection of Table 2 shows that the resulting numbers of circles packed in Q (and, hence, the packing density) coincide with the best known results (see Table 13.1 in [5]), except for $r=0.275$ and 0.3125 . Moreover, the best known results for $r=0.5,0.375$ and 0.25 are optimal (unimprovable) (see, e.g., [5]).

The number of circles packed in R is everywhere two and more times larger than the number of circles packed in Q. Based on this result, we conclude that the resulting packings in R are acceptable. The number of ellipses packed in Q is, as a rule, less than the number of circles (of equal area). For ellipses packed in R, the numbers of packed ellipses and circles coincide in half of the cases.

The packings of circles in Q were obtained (on the above-mentioned computer) by solving system (4), (5) without applying the heuristic at radii $r \geq 0.275$. Starting at $r=0.25, Q$ was divided into two parts. In the case of ellipse packing in the square, the heuristic was not used for ellipse parameters corresponding to $r \geq 0.375$ and was used for $r=0.275$ and 0.25 .

For circles packed in R, system (4), (5) was solved without applying the heuristic for $r \geq 0.375$, while, for $r=0.275$ and 0.25 , the heuristic was used. For ellipses packed in R, the heuristic was not used for $r=$ 0.5625 and 0.5 , while being used for the other ellipse parameters.

In the case where the radius of circles is $r=0.5625$, it was found that 13 circles can be packed in R (see Fig. 3a). Packings of 12 ellipses were obtained for vertical and horizontal ellipses (see Figs. 3b and 3c, respectively). In the case of both horizontal and vertical ellipses, 13 ellipses can be packed in R with the packing density equal to that for 13 circles. Figures 3d and 3e show packings of 13 ellipses with various ratios of the numbers of horizontal and vertical ellipses.

The introduction of level weights and the pressing of ellipses were found to be useful. More specifically, Fig. 3b shows the maximum possible number of horizontal ellipses packed in R as obtained with level weights and the pressing down procedure, while Fig. 3e displays similar results obtained without level weights. The number of ellipses is identical in both cases. From a practical point of view, however, the packing in Fig. 3b can be more useful, since it leaves a single large piece in the upper part of R intact, in contrast to the case depicted in Fig. 3e. This large piece of the rectangle (material) can possibly be used for something else. When a given number of ellipses are cut off from a strip, the level weights make it possible to minimize the length of the strip used. The result of packing can depend on whether the ellipses are pressed up or down, right or left. The packings in R were obtained by pressing the ellipses down via choosing suitable level weights.

Figure 4 presents the resulting packings of (a) 45 circles, (b) 45 horizontal ellipses, (c) 45 vertical ellipses, and (d) 24 horizontal ellipses and 21 vertical ellipses. The packing densities p are identical in all these cases. Specifically, $p=0.767$, which differs from the best known packing density for circles packed in the square by at most 0.02 .

In the case of packing both horizontal and vertical ellipses, in each considered case (presented in Table 2), the number of ellipses was no less (and sometimes more) than that for entirely horizontal or vertical ellipses.

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for his or her remarks and helpful suggestions that improved this work.

REFERENCES

1. I. Castillo, F. J. Kampos, and J. D. Pinter, "Solving circle packing problems by global optimization: Numerical results and industrial applications," Eur. J. Operat. Res. 191, 786-802 (2008).
2. M. Hifi and R. M'Hallah, "A literature review on circle and sphere packing problems: Models and methodologies," Adv. Oper. Res. 2009, Article ID 150624, doi: 10.1155/2009/150624.
3. M. Locatelli and M. Raber, "Packing equal circles in a square: A deterministic global optimization approach," Discrete Appl. Math. 122, 139-166 (2008).
4. A. Lodi, S. Martello, and M. Monaci, "Two-dimensional packing problems: A survey," Eur. J. Operat. Res. 141, 241-252 (2002).
5. P. G. Szabó, M. Cs. Marcót, T. Csendes, E. Specht, et al., New Approaches to Circle Packing in a Square with Program Codes (Springer, Berlin, 2007).
6. Facility Location: Application and Theory, Ed. by H. W. Hamacher and Z. Drezner (Springer, New York, 2004).
7. R. F. Love, J. G. Morris, and G. O. Wesolowsky, Facilities Location Models and Methods (North-Holland, Amsterdam, 1988).
8. C. S. ReVelle and H. A. Eiselt, "Location analysis: A synthesis and survey," J. Operat. Res. 165, 1-19 (2005).
9. Y. Hiragi, "Molecular shape and structure of regular molecular assembles: II. The geometrical conditions for two dimensional packing of the elliptic molecule," Bull. Inst. Chem. Res. Kyoto Univ. 56 (4), 170-175 (1978).
10. W. X. Xu and H. S. Chen, "Micro structural characterization of fresh cement paste via random packing of ellipsoidal cement particles," Materials Characterization, No. 66, 16-23 (2012).
11. G. Delaney, D. Weaire, S. Hutzler, and S. Murphy, "Random packing of elliptical circles," Philos. Mag. Lett. 85 (2), 89-96 (2005).
12. L. F. Toth, "Packing of ellipses with continuously distributed area," J. Discrete Math. 60, 263-267 (1986).
13. W. X. Xu, H. S. Chen, and Z. Lu, "An overlapping detection algorithm for random sequential packing of elliptical particles," Physica A 390, 2452-2467 (2011).
14. Z. Y. Zhou, D. Pinson, R. P. Zou, and A. B. Yu, "Discrete particle simulation of gas fluidization of ellipsoidal particles," Chem. Eng. Sci. 65, 6128-6145 (2011).
15. Sh. I. Galliev, "Computational algorithms for the optimum covering of plane domains by a prescribed number of ellipses," Comput. Math. Math. Phys. 35, 609-617 (1995).
16. M. S. Canbolat and M. von Massow, "Planar maximal covering with ellipses," Comput. Ind. Eng. 57, 201-208 (2009).
17. Sh. Galiev, M. Lisafina, and V. Judin, "Optimization of a multiple covering of a surface taking into account its relief," Proceedings of the 3rd International Conference on Optimization and Applications (OPTIMA-2012) Costa da Caparica, Portugal, September 2012 (Moscow, 2012), pp. 86-90.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

