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1. INTRODUCTION

Following publications of other authors, we regard the figure bounded by an ellipse curve as an ellipse,
assuming that it is easy to understand from the context whether we mean the curve or the figure. The prob�
lem of packing circles, ellipses, squares, rectangles, or other figures in a plane or a given domain, for exam�
ple, a square, rectangle, triangle, circle, or strip has been extensively studied and various approaches have
been developed for its solution (see, for example, [1–5]). The interest in the packing problem and the con�
ceptually related covering problem is motivated primarily by their possible applications in practice.
Numerous applications of these problems in economics and engineering can be found in [6–8]. Ellipse
packings are also used in the analysis of structures consisting of elliptic molecules in crystals [9], while
ellipsoid packings are used to analyze structures of cement solutions [10] (for ellipse packing problems,
see also [11–14]).

At present, various models of packing problems are available, in which the packing problem is often
reduced to a nonlinear programming problem and, in the case of square or rectangle packing, to a linear
programming problem (for the use of linear programming problems, see, e.g., [4]). There is a series of
works in which circles are packed in a rectangle (the circle is a special case of an ellipse). Numerous pub�
lications are available on packings in a triangular domain, a circular domain, a strip, etc. We do not present
a detailed analysis of publications concerning packing problems but indicate only some works where over�
views can be found (see, e.g., [1, 2, 4, 5] and the bibliography therein). Additionally, there are studies
addressing conceptually related problems of covering shapes by ellipses (see [15, 16]).

Note that the problem of packing figures (for example, circles) is usually stated as packing n circles of
maximum possible (previously unknown) diameter in a given domain. In applications, as a rule, the sizes
of the figures to be packed are known and the task is to put the maximum possible number of figures in a
given domain. We follow the approach to the packing problem when equal ellipses to be packed have given
sizes (parameters). Moreover, we consider the case when the major axes of all the ellipses are parallel to
the x or y axis or when some ellipses have major axes parallel to the x axis, while the others, to the y axis;
i.e., the ellipses are orthogonally oriented. The case of ellipse axes having relative positions other than
these is not considered.

In this paper, we propose linear models for the numerical optimization of the number (determining the
maximum possible number) of equal ellipses of fixed size that can be packed in a given rectangular domain R.
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It is shown that the lp metric can be used to determine the conditions under which ellipses with mutually
orthogonal major axes (orthogonally oriented ellipses) do not intersect. In R a grid is constructed whose
nodes generate a finite set T of points. It is assumed that the centers of the ellipses can be placed only at
some points of T. The packing problems are reduced to integer linear programming problems. A heuristic
algorithm based on the linear models is proposed for solving the ellipse packing problems. Numerical
results are presented that demonstrate the effectiveness of this approach.

2. FORMULATION OF THE PROBLEM

Assume that a Cartesian coordinate system xOy is introduced in a plane P, and let d(s, t) be the Euclid�
ean distance between points s and t. Let E be an ellipse centered at the point C(x, y) with semimajor and
semiminor axes a and b, respectively. Here, a and b are assumed to be parameters of the ellipse. If the major
axis of an ellipse is parallel to the x axis, then the ellipse with an indicated center C(x, y) and parameters a
and b is denoted by E(X; x, y, a, b). If the major axis of an ellipse is parallel to the y axis and its center and
parameters are the same as before, then the ellipse is denoted by E(Y; x, y, a, b).

In what follows, we assume that R is a closed rectangular domain in the plane P and the sides of R are
parallel to the coordinate axes. A collection of m equal open ellipses Ej, 1 ≤ j ≤ m, forms a packing in R if
each ellipse Ej is contained in R, 1 ≤ j ≤ m, and each point s from R belongs to at most one of these ellipses.

The density of a packing is defined as the ratio of the sum of the areas of all packed ellipses to the area
of the figure in which they are packed. The packing density is denoted by p.

Problem Z1. Determine the maximum possible number of equal open ellipses with given parameters
that can be packed in a domain R and determine the positions of their axes and centers.

Let R* (R* ⊂ R) be the set of all points s from R such that s is the center of an ellipse E contained in R:
E ⊂ R. Assume that the set R* is not empty. On R* we construct a rectangular grid with a chosen step Δ in
x and y. The nodes of the grid are denoted by t1, t2, …, tn, n ≥ 1. Let T = {t1, t2, …, tn}, and let each point ti,
1 ≤ i ≤ n, belong to R*.

A grid on R* can be constructed in an arbitrary manner or the points of T = {t1, t2, …, tn} can be specified
(chosen) without using a grid or with partial use of grid nodes.

Assume that the set T has been somehow constructed.
Problem Z2. Determine the maximum possible number of equal open ellipses with given parameters a

and b centered at some points of T that can be packed in R and determine the positions of their axes and
centers.

In what follows, instead of solving problem Z1 on R, we solve some versions of problem Z2. Clearly,
the resulting packing gives an approximate solution of problem Z1.

3. TANGENCY CONDITION FOR ELLIPSES WITH MAJOR AXES PARALLEL 
TO THE x OR y AXIS AND METHODS FOR GRID CONSTRUCTION

The following result can be proved to hold.
Proposition 1. Let E1(X; 0, 0, a, b) and E*(X; 0, 0, 2a, 2b) be ellipses with indicated parameters centered

at the origin. Then any ellipse E2(X; x2, y2, a, b) with its center C2(x2, y2) lying on the curve enclosing E*(X; 0,
0, 2a, 2b) has a unique intersection point with E1(X; 0, 0, a, b).

Corollary 1. Proposition 1 remains valid if the symbol X in the ellipse notation is everywhere replaced
by Y.

For brevity, ellipses with major axes parallel to the x axis are referred to as horizontal ellipses, while
ellipses with major axes parallel to the y axis are referred to as vertical ellipses.

It is well known that, in the case of an optimal packing of equal circles in the entire plane, the lines
passing through their centers generate a skewed grid. One of the grid lines is parallel to the x axis, and the

other, to the vector (1, ). For packing circles or ellipses in a bounded set, no results of this type are
unknown to the authors. It is natural to assume that a similar skewed grid may also be optimal for ellipses
arranged in a staggered manner. By a rectangular grid, we mean one with its generating lines parallel to the
coordinate axes.

By applying a more detailed analysis, it can be shown that a rectangular grid is preferable to a skewed
grid and that the best strategy for varying the grid step in grid construction is by halving it. Moreover, it can
be established that a rectangular grid with different grid steps in the x and y axes is acceptable. Similar
results hold for vertical ellipses.

3
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Clearly, there are other methods for constructing a grid, but the indicated ones are rather convenient.
In many respects, the shape of the grid depends on the domain G and, in the authors’ view, there is no uni�
versal method for grid construction in the general case.

4. PACKING OF HORIZONTAL ELLIPSES

Consider ellipses with parameters a and b and with major axes parallel to the x axis. Let  be a rect�

angle lying in R (  ⊂ R) such that the upper and lower sides of  are separated from the corresponding

sides of R by a distance of b, while the lateral sides of  are separated from the corresponding lateral sides

of R by a distance of a. Obviously,  is the set of all points s(x, y) from R such that s(x, y) is the center of
an ellipse E(X; x, y, a, b) contained in R: E(X; x, y, a, b) ⊂ R.

On  we construct a rectangular grid, whose nodes are denoted by tx1, tx2, …, txn, n ≥ 1. Let Tx =

(tx1, tx2, …, txn), and let each point txi, 1 ≤ i ≤ n, belong to . Now we consider problem Z2 assuming that
the major axes of the ellipses are parallel to the x axis and the centers of the ellipses can be placed only at
some points of Tx.

Let Ci be the center of the ith ellipse, 1 ≤ i ≤ Nx, 1 ≤ Nx ≤ n, where Nx is the number of ellipses to be
packed. Following a well�known method, we introduce the variables

(1)

Let the center Ci of the ellipse Ei(X; xi, yi, a, b) coincide with the point txi(xi, yi); i.e., zi = 1, 1 ≤ i ≤ n. For
Ei to be disjoint with the other ellipses to be packed, it is necessary that zj be zero for all points (ellipse cen�
ters) txj, i ≠ j, lying E*(X; xi, yi, 2a, 2b). Suppose that there are ri points txj, i ≠ j, 1 ≤ j ≤ n, that lie inside
E*(X; xi, yi, 2a, 2b). Denote by int(X) the interior of the set X.

The above nonintersection condition for horizontal ellipses can be written as follows:

if zi = 1, then, for all j such that txj ∈ int(E*(X; xi, yi, 2a, 2b)) it is true that zj = 0, i ≠ j, 1 ≤ j ≤ n. (2)

The following result can be proved.

Proposition 2. The nonintersection condition (2) for horizontal ellipses is equivalent to the condition

(3)

The satisfaction of condition (2) (or (3)) means that, if the center of an ellipse with parameters a and
b is placed at the point txi(xi, yi), 1 ≤ i ≤ n, then the center of any other ellipse can be placed only at points txj,
i ≠ j, 1 ≤ j ≤ n, such that txj ∉ int(E*(X; xi, yi, 2a, 2b)). Therefore, under this condition, open ellipses with
parameters a and b centered at txi and txj do not intersect.

We introduce the coefficients

Obviously, for given i, condition (2) and, hence, condition (3), can now be written as ai1z1 + ai2z2 + … +
ainzn ≤ ri, 1 ≤ i ≤ n.

Let A be an n × n matrix with elements aij, where 1 ≤ i, j ≤ n, and let Z and Mx be vectors

Rx*

Rx* Rx*

Rx*

Rx*

Rx*

Rx*

zi

1 if the center of  Ci coincides with txi,

0 otherwise,⎩
⎨
⎧

1 i n.≤ ≤=

rizi zj

j:txj int E* X; xi yi 2a ab, , ,( )( ) i j≠,∈

∑ ri.≤+

aij

1, txj int E* X; xi yi 2a 2b, , ,( )( ),∈

0, txj int E* X; xi yi 2a ab, , ,( )( ),∉⎩
⎨
⎧

i j, 1 i j n, aii≤,≤≠ ri, 1 i n.≤ ≤= =

Z z1 z2 … zn, , ,( )T
, Mx r1 r2 … rn, , ,( )T

.= =
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Consider the problem

  max (4)

subject to the constraints

(5)

This problem is to maximize the number of variables zi taking a value of 1 and such that zi and zj are
both equal to 1 if txi ∉ int(E*(X; xj, yj, 2a, 2b)) and txj ∉ int(E*(X; xi, yi, 2a, 2b)). Therefore, the open
ellipses centered at the points ti and tj do not intersect. Consequently, problem (4), (5) is to pack in G the
maximum possible number of horizontal ellipses with parameters a and b centered at some points of Tx.
Solving problem (4), (5), we find the number Nx of packed ellipses with parameters a and b, while the
found values zi determine the positions of the ellipses’ centers.

Note that conditions (2) and (3) and the reduction of them to linear constraints were proposed in [17]
for the case of circle packing.

5. THE CASE OF ELLIPSES WITH MAJOR AXES PARALLEL TO THE y AXIS

Obviously, if the major axes of all the ellipses are parallel to the y axis, then the argument is similar to
the preceding case.

Instead of the rectangle , we construct a rectangle  lying inside R (  ⊂ R) such that the upper

and lower sides of  are separated from the corresponding sides of R by a distance of a, while the lateral

sides of  are separated from the corresponding lateral sides of R by a distance of b. Obviously,  is the
set of all points s(x, y) from R such that x(x, y) is the center of a vertical ellipse E(Y; x, y, a, b) contained
in R: E(Y; x, y, a, b) ⊂ R. On the set , we construct a rectangular grid. The grid nodes form a set Ty =

{ty1, ty2, …, tym}, where m is the number of elements in Ty; moreover, each point tyi, 1 ≤ i ≤ m, belongs to .
Now we consider and solve problem Z2 assuming that the centers of the vertical ellipses to be packed can
be placed only at some points of Ty. Let Ci be the center of an ellipse. We introduce the variable

Suppose that there are si points tyj, i ≠ j, 1 ≤ j ≤ n, that are inside the ellipse E*(Y; xi, yi, 2a, 2b). Define the
coefficients

They generate an m × m matrix, which is denoted by B.

Let V and My be vectors V = (v1, v2, …, vm)T and My = (s1, s2, …, sm)T. Consider the problem

  max (6)

subject to the constraints

(7)

This problem is to maximize the number of variables vi taking a value of 1 and such that vi and vj are
both equal to 1 if tyi ∉ int(E*(Y; xj, yj, 2a, 2b)) and tyj ∉ int(E*(Y; xi, yi, 2b, 2b)). Therefore, the open ver�
tical ellipses centered at the points tyi and tyj do not intersect. Therefore, problem (6), (7) is to pack in R
the maximum possible number of vertical ellipses with parameters a and b centered at some points of Ty.

Nx zi

i 1=

n

∑=

AZ Mx, zi 0 1,{ }, 1 i n.≤ ≤∈≤

Rx* Ry* Ry*

Ry*

Ry* Ry*

Ry*

Ry*

vi

1 if the center of Ci coincides with tyi,

0 otherwise,⎩
⎨
⎧

1 i m.≤ ≤=

bij

1, tyj int E* Y; xi yi 2a 2b, , ,( )( ),∈

0, tyj int E* Y; xi yi 2a 2b, , ,( )( ),∉⎩
⎨
⎧

i j, 1 i j m, aii≤,≤≠ si, 1 i m.≤ ≤= =

Ny vi

i 1=

m

∑=

BV My, vi 0 1,{ }, 1 i m.≤ ≤∈≤
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6. TANGENCY CONDITIONS FOR ELLIPSES WITH MUTUALLY 
ORTHOGONAL MAJOR AXES

Let E1 and E2 be ellipses whose major axes are mutually orthogonal. As is known, the determination of
intersection points of arbitrary ellipses is generally reduced to solving fourth�degree equations. We try to
avoid the solution of such an equation and the enumeration of its roots.

Let E1 and E2 be two ellipses with a tangency point F. Assume that their semimajor and semiminor axes
are a and b, respectively, and their major axes are mutually orthogonal. Moreover, let a + b be a constant:
a + b = const. Let C1 and C2 be the centers of E1 and E2, respectively. If the eccentricities of the ellipses are
zero (e1 = e2 = 0 (a = b)), i.e., E1 and E2 are circles, then C2 obviously lies on the circle of radius r = 2a
(r = a + b) centered at C1. Denote this circle by W. In the degenerate case, when the eccentricities of the
ellipses are equal to unity, the center of E2 (when E1 and E2 have a tangency point) obviously lies on the
boundary of the square G with sides parallel to the coordinate axes and with side length 4a. If the value of
the eccentricity e is other than 0 or 1, then, as the tangency point F of the ellipses move along the boundary
of E1, the center C2 of E2 describes a curve S contained between W and G.

Let L be the ray starting at the center C1 of E1 and passing through the center C2 of E2, and let α be the
angle between the Ox axis and L. If α varies, then, according to computations, [d(C1, C2) – r] increases,
reaching its maximum at α = π/4, and then decreases to zero at α = π/2; next, the pattern is repeated.
Thus, the tangency point of two equal ellipses with mutually orthogonal major axes cyclically approaches
W and G and moves away from them. Interestingly, similar behavior is exhibited by points of “circles” gen�
erated by the lp metric. Following a well�known procedure, the distance between arbitrary points s and l is
defined as

For p = 2, this is the usual Euclidean distance and dp(s, t) = r is the equation of a circle of radius r cen�
tered, for example, at the point s(xs, ys); moreover, if r = a + b, then the point t(xt, yt) lies on the circle W.
For p = ∞, the equation dp(s, t) = r defines a square G centered at s(xs, ys) with sides parallel to the coor�
dinate axes and with side length 4a. When 2 < p < ∞, the equation dp(s, t) = r with fixed s generates curves Sp

lying between W and G. Relying on this analogy, we approximate S by a curve Sp.

In the special case of α = π/4 + kπ/2, where k is an integer, the tangency point of E1 and E2 is fairly easy
to find; for example, for α = –π/4, the coordinates of the tangency point are given by

In cases other than those indicated above, the tangency points of the ellipses can be found as follows.
Let F be a tangency point of E1 and E2. Given one of the coordinates of the center C2 of E2, say, x2, the
other coordinate of C2 in the case of –π/2 ≤ α ≤ 0 can be found by solving the nonlinear programming
problem

  min,

A similar strategy is used for other values of α. As a result, we find the coordinates of tangency points
for arbitrary values of α.

Now let us choose a parameter p. Choosing a position of the center C2 of E2 (assuming that E2 is tangent
to E1), we draw the ray L starting at C1 and passing through C2. Therefore, C2 lies on the curve S. Let C3 be
an intersection point of Sp and L lying further away from C1 than the point C2. The value of p is chosen so
that C3 is as close as possible to C2; in other words, the curve Sp is as close as possible to S (on L), i.e.,
dp(C1, C2) ≈ (a + b). With a prescribed accuracy with respect to p, the value of p is chosen as follows. Start�
ing with a chosen p0 (p0 ≥ 2), p is increased with the step Δp so that the ratio q = dp(C1, C2)/(a + b) with the
new p is larger than unity, while, with the preceding value of p (equal to p – Δp), this ratio is less than or
equal to unity. The resulting p is used as its desired value. It ensures that the intersection point (C3) of the
ray l and the curve Sp is farther away from C1 than from C2 (according to the Euclidean distance). There�
fore, if the center of E2 lies at C3, the ellipses centered at C1 and C3 do not intersect. At different angles
between L and the Ox axis, we can obtain different values of p. For example, at the eccentricity e =

dp s t,( ) xs xt–
p

ys yt–
p

+[ ]
1/p

, 2 p ∞; dp s t,( )<≤ max xs xt– ys yt–,( ), p ∞.= = =

x a
2
c

a
2

b
2

+
�������������, y x c– a

2
c

a
2

b
2

+
������������� a

2
b

2
+ .+= = =

y2

x x2–( )2
/b

2
y y2–( )2

/a
2

+ 1, x
2
/a

2
y

2
/b

2
+ 1, y2 0, x2< const, 0 x2 a b.+≤ ≤= = =
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0.86603, the parameter p for different angles α ranges from 2.145 to 2.354. Clearly, if we choose the largest
value of p for various inclination angles of L, then, for each L, its intersection point with Sp (the point C3)
is father from C1 than from C2. Consequently, if the center of E2 lies on Sp, the ellipses E1 and E2 do not
intersect.

In this paper, we obtained sets of coordinates x2 and y2 of the point C2 for different values of a and b.
Figure 1 shows the curves S constructed for ellipses with parameters a = 2, b = 1; a = 2.2, b = 0.8; and
a = 2.6, b = 0.4 and the curves Sp (dashed) in the case of x ≥ 0 and y ≤ 0. Additionally, the figure presents
part of the circle W of radius a + b. When the eccentricity of the ellipse does not exceed 0.86603, the curves S
and Sp nearly coincide, while in the cases, for example, e = 0.93154 and e = 0.98808, the curves Sp are
some distance away from S, as can be seen in Fig. 1. The distance between S and Sp can be found as the
distance between the points C2 and C3 for a chosen angle between L and the x axis. The longest distance
for chosen ellipse parameters is denoted by γ. Table 1 gives the resulting values of p and γ for various ellipse
parameters. Note that, for ellipses with a given eccentricity, p is chosen once and the resulting value of p is
then used for all ellipse packing problems of this type in various rectangular domains.

7. PACKING ELLIPSES SOME OF WHICH HAVE ORTHOGONAL MAJOR AXES 
(ORTHOGONALLY ORIENTED ELLIPSES)

Assume that sets Tx and Ty have been constructed. Although some of the points txi and tyj may coincide,
we retain the double notation for them, since the coincidence of the center of an ellipse with txi means that
its major axis is parallel to the x axis, while the coincidence with tyj means that its major axis is parallel to
the y axis.

1 2 3 x

−1

−2

−3

y

Sp, p = 2.794
Sp, p = 5.259

S(a = 2.6, b = 0.4)

S(a = 2.2, b = 0.8)

S(a = 2, b = 1)

W

Fig. 1. Curves S and Sp.

Table 1. Values of the parameter p

Parameters a/b Eccentricity e Parameter p γ

1.6/1.4 0.48412 2.01300 0.00200

1.8/1.2 0.74536 2.1200 0.00722

2/1 0.86603 2.35900 0.01957

2.2/0.8 0.93154 2.79500 0.03813

2.4/0.6 0.96825 3.59500 0.06007

2.6/0.4 0.98809 5.27500 0.07942
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For ellipse packing, we have to take into account the nonintersection condition for ellipses with major
axes parallel to the x axis. This condition is written as AZ ≤ Mx (see (5)). Then we take into account the
nonintersection conditions for ellipses with major axes parallel to the y axis: BV ≤ My (see (7)). Next, the
nonintersection conditions for ellipses with mutually orthogonal major axes are taken into account.

The nonintersection conditions for horizontal and vertical ellipses are written in the form of conditions
similar to (3). Each horizontal ellipse cannot intersect each vertical ellipse. In Section 4, we used the fact
that the center ti(xi, yi) of the ellipse E(X, xi, yi, a, b) is not an interior point of the ellipse E(X, xj, yj, 2a, 2b)
centered at tj(xj, yj), while now we use the distance dp(ti, tj) with a chosen parameter p. The conditions
under which vertical ellipses do not intersect horizontal ones are written in a similar manner.

Let the center of an ellipse Ei be at the point txi; i.e., this is a horizontal ellipse. Assume that tyj is the
center of a vertical ellipse Ej. According to Section 6, these ellipses do not intersect if the distance between
txi and tyj based on the found p�metric is at least a + b.

Suppose that, for txi, there are qi points tyj for which dp(txi, tyj) < a + b, 1 ≤ i ≤ n. The coefficients cij are
defined in a similar fashion to the coefficients aij for constraints (5):

(8)

Remark 1. The determination of the coefficients cij assumes that p is known (determined). When the
ellipse eccentricity is, for example, 0.86603, the distance between the centers of the ellipses measured
along the line L differs from dp(txi, tyj) by at most γ = 0.02 (see Table 1). If this accuracy (γ) is satisfactory,
then p can be set to a value from Table 1. Otherwise, for each slope of the line L (for pairs of points tyj

and txi), its own value of p has to be chosen.

From the coefficients cij, 1 ≤ i ≤ n, m + 1 ≤ j ≤ m + n, we can construct an n × (m + n) matrix C. Define
the vectors VZ = (v1, …, vm, z1, …, zn)T and M

vz = (q1, …, qn)T. The constraints are constructed taking into
account that some of cij vanish (see (8)):

(9)

Inequalities (9) are the conditions under which any possible horizontal ellipse does not intersect any
possible vertical ellipse.

Now suppose that the center of an ellipse Ei coincides with the point tyi. Let us derive the conditions
under which Ei does not intersect ellipses Ej with major axes being orthogonal to that of Ei. For this pur�
pose, we again use the distance dp(tyi, txj). Suppose that, for the point tyi, there are li points txj for which
dp(tyi, txj) < a + b, 1 ≤ i ≤ m. Define the coefficients

(10)

When determining hij, we have to take into account Remark 1. These coefficients m ×(n + m) are used
to construct a matrix H. Define the vectors ZV = (z1, …, zn, v1, …, vm)T and Mzv = (l1, …, lm)T.

cij

1, dp txi tyj,( ) a b,+<

0 otherwise,⎩
⎨
⎧

i 1 … n, j, , 1 … m,, ,= = =

ci i m+, qi, 1 i n, cij≤ ≤ 0, 1 i n, m 1 j m n, j i m.+≠+≤ ≤+≤ ≤= =

c11 c12 … c1m c1 m 1+, 0 … 0

c21 c22 … c2m 0 c2 m 2+, … 0

… … … … … … … …
cn1 cn2 … cnm 0 0 … cn n m+,⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

v1

…
vm

z1

…
zn⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

q1

q2

…
qn⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.≤

hij

1, dp tyi txj,( ) a b,+<

0 otherwise,⎩
⎨
⎧

i 1 … m, j, , 1 … n,, ,= = =

hi i n+, li, 1 i m, hij≤ ≤ 0, 1 i m, n 1 j n m, j i n.+≠+≤ ≤+≤ ≤= =
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The constraints are constructed taking into account the fact that some of hij vanish (see (10)):

(11)

Inequalities (11) are the conditions under which any possible vertical ellipse does not intersect any pos�
sible horizontal ellipse. Clearly, if conditions (9) hold, then conditions (11) hold as well and vice versa.
The choice of conditions (9) or (11) depends on the number of their rows, if we want to reduce the number
of constraints.

Now the packing problem for ellipses some of them have major axes parallel to the x axis, while the
others, to the y axis, has the form

  max (12)

subject to the constraints

(13)

8. ALGORITHM FOR PACKING ELLIPSES IN A GIVEN DOMAIN

Problems (4), (5); (6), (7); and (12), (13) are integer linear programming problems. Obviously, they
can be solved using any method (algorithm) for integer linear programming problems if it can be imple�
mented in an acceptable time. For high dimensions (large numbers of variables), the solution of such
problems by applying well�known methods is too expensive (frequently unacceptably) in terms of CPU
time. For this reason, we propose a heuristic algorithm based on a natural stage�by�stage packing proce�
dure. Specifically, the algorithm first packs a few (possibly, three or four) layers of ellipses. Then another
few are packed taking into account the constructed packing, etc.

Before describing this heuristic algorithm, we present some auxiliary arguments. Consider the problem
of packing the maximum possible number of open equal horizontal ellipses with parameters a = 0.45 and
b = 0.3 into a rectangle R of width 1.8 and height 0.9. Obviously, two such ellipses can be packed in R. This
solution can be obtained by constructing a model of form (4), (5). Let the step for grid construction in x
and y be Δ = 0.3. Then the set T consists of eight points: T = {t1, t2, …, t8} (see Fig. 2). Problem (4), (5) is
written as

  max (14)

h11 h12 … h1n h1 n 1+, 0 … 0

h21 h22 … h2n 0 h2 m 2+, … 0

… … … … … … … …
hm1 hm2 … hm n, 0 0 … hm m n+,⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

z1

…
zn

v1

…
vm⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

l1

l2

…
lm⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.≤

z1 … zn v1 … vm+ + + + +

AZ Mx, BV My,≤ ≤

C VZ( ) M
vz or H ZV( ) Mzv,≤ ≤

zi 0 1,{ }, 1 i n, vj 0 1,{ }, 1 j m.≤ ≤∈≤ ≤∈

N1 z1 z2 z3 z4 z5 z6 z7 z8+ + + + + + +=

t1 t2 t3 t4

t5 t6 t7 t8

Fig. 2. Introduction of weights of the levels.
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with constraints (5) constructed for the above set T and chosen ellipses parameters. Solving this problem,
we find that the largest N1 is equal to 2 and the centers of the ellipses can be placed at the points t1 and t4,
t1 and t8, t4 and t5, or t5 and t8.

If we want the packed ellipses to be as low as possible (in R), the model has to be changed. Specifically,
we assume that the points t1, t2, t3, and t4 are at the second level, while the points t5, t6, t7, and t8 are at the
first level. The levels are indexed from bottom to top. Points placed at the same level have identical coor�
dinates y. We want the centers of the ellipses to be as low as possible. For this reason, the variables corre�
sponding to the points at the first level are multiplied by a constant (weight) c1 that is larger than the weight c2

used to multiply the variables at the second level. Let c1 = 2 and c2 = 1. Then instead of (14), we write

  max. (15)

Solving problem (15) with the same constraints as above, we find that the largest value N2 is 4 and the cen�
ters of two ellipses can be placed only at the points t5 and t8. Thus, by choosing weights of the levels, we
ensured that the centers of the ellipses are as low as possible. Clearly, a similar pressing down procedure
can be applied to other rectangles and other ellipses, since the constraints of the problem ensure that the
ellipses do not intersect and, if an ellipse can be placed lower, then the objective function value increases;
i.e., due to the level weights introduced, the ellipses are shifted down whenever possible.

Now we find out the effect that can be achieved by introducing certain subsets of the set R.
First, consider the case of packing horizontal ellipses. Suppose that the coordinates y of points from R

satisfy the condition α ≤ y ≤ β, while the coordinates y of points from R* satisfy α* ≤ y ≤ β*; here, R* is
the set of possible positions of the ellipse centers in R. Let α1 be chosen so that α1 ≥ α* + 4r and α1 ≤ β,
where r is the semiaxis parallel to the y axis: for horizontal ellipses, r = b (while for vertical ellipses, r = a).

The set D
α1 is defined as the subset of R that lies below the line y = α1. For D

α1, we construct  in a

similar manner to the construction of the set R* for R:  contains a point s from D
α1 if and only if the

open ellipse centered at s is contained in D
α1. Next, on  we construct a grid whose nodes generate the

set T
α1 = {t1, t2, …, tn1}. Points tj with identical coordinates yj, 1 ≤ j ≤ n1, are thought of as lying at the same

level. The set T
α1 = {t1, t2, …, tn1} constructed for  may contain points lying at k levels, where k ≥ 1 and

the levels are indexed from bottom to top. We introduce k weights of these levels: c1 ≥ c2 ≥ … ≥ ck, where
cj is the weight of the jth level. In the objective function, the variables zj are multiplied by the weight of the
level that contains the point tj, 1 ≤ j ≤ n1. As a result, we obtain a new objective function, while the con�
straints are constructed in the same way as for problem (4), (5) but with the set D

α1. The resulting problem
with allowance for the level weights is regarded as an auxiliary problem, and its solution is regarded as a
solution for the set D

α1. As a result, for D
α1, we obtain an ellipse packing in D

α1, Dα1 ⊆ R, which is denoted
by P

α1.

Suppose that  has been constructed and a packing  has been found on it. Let Δ be the
step for grid construction in y. The boundary of the set D

αi (i ≥ 2) consists of

• the segments of the lines y = αi and y =  – 2r – Δ, contained in R;

• the portions of the boundary of R lying between these lines;
• if, above the line y = αi – 1, there is no similar line, then the boundary of D

αi consists of the segment
of the line y = αi – 1 – 2r – Δ contained in R and of the boundary of R lying above the line y = αi – 1 – 2r – Δ.

The set  consists of points s from D
αi that are a distance of b away from the horizontal boundaries

of D
αi and a distance of a away from its vertical boundaries and additionally satisfy the following condi�

tions: for any ellipse E(X, xj, yj, a, b) from , it is true that s ∉ intE(X, xj, yj, 2a, 2b). Here,  is

the packing obtained at the preceding level. Therefore, the construction of , 1 < i ≤ g, makes use of the

packing  constructed for the subset . Next, on , a grid is constructed whose nodes gen�
erate a set T

αi. The latter is used to construct an auxiliary problem with allowance for the level weights.
Solving this problem yields a packing P

αi for the subset D
αi.

For chosen grid steps, suppose that, for R, a set R* is found, a grid is constructed on R*, and its nodes
are used to construct a set T. Assume that, on each level of the set D

αi, identical grid steps are chosen and
the corresponding sets T

αi, 1 ≤ i ≤ g are constructed stage by stage. Let n be the number of elements in T

N2 z1 z2 z3 z4 2z5 2z6 2z7 2z8+ + + + + + +=

Dα1
*

Dα1
*

Dα1
*

Dα1
*

Dα i 1–( ) Pα i 1–( )

αi 1–

Dαi
*

Pα i 1–( ) Pα i 1–( )

Dαi
*

Pα i 1–( ) Dα i 1–( ) Dαi
*
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and ni be the number of elements in T
αi, 1 ≤ i ≤ g. It is important that each ni (1 ≤ i ≤ g) be less than n and,

additionally, the sum of all ni be also less than n. Thus, the dimensions of the auxiliary problems for D
αi are

lower than the dimension of problem (4), (5) for the entire set R.
For vertical ellipses, the procedure is similar to that described above, while, for ellipses with differently

oriented major axes, the procedure has to take into account the nonintersection conditions for horizontal
and vertical ellipses and ones with mutually orthogonal major axes.

If the number n of variables (dimension) of problem (4), (5); (6), (7); or (12), (13) does not exceed n*,
then the chosen problem is regarded as solvable in an acceptable time. If n > n*, then we use the following
algorithm.

Algorithm

1. On the domain R, construct g (g ≥ 2) subsets D
αi, 1 ≤ i ≤ g, such that the auxiliary problems con�

structed for them have an acceptable dimension.
2. Sequentially solve the auxiliary problems for each subset, starting from D

α1, to obtain packings in
these subsets. The union of the resulting packings for the subsets D

αi, 1 ≤ i ≤ g, is regarded as the solution
of the packing problem for R. Complete the procedure.

Obviously, the packings for individual subsets D
αi, 1 ≤ i ≤ g, are not independent. The solution for each

subset, starting from the second, depends on the solutions obtained for the preceding subsets. However,
even if an optimal packing is obtained for each subset, it does not mean that the resulting packing is opti�
mal. Nevertheless, the numerical computations performed have shown that the algorithm produces
acceptable results in an acceptable time. In other words, the algorithm can be viewed as effective.

The parameters α1, α2, …, αg – 1 of the algorithm, which determine the subsets D
αi, 1 ≤ i ≤ g, are chosen

at the initial stage so that the auxiliary problems are solvable in an acceptable time. For packing horizontal
ellipses, the values of α1, α2, …, αm – 1 can be optimized as follows. Given α1 and a set D

α1, problem (4),
(5) is solved without introducing level weights. As a result, we obtain a packing of, say, q1 ellipses in D

α1,
D

α1 ⊆ R. Gradually reducing α1, we find its smallest value (with the prescribed accuracy) at which the
number of packed ellipses remains equal to q1. Before selecting the next value α2, for D

α1 (with chosen α1),
we need to solve an auxiliary problem with level weights, so that the ellipses are placed as low as possible,
while their number remains equal to q1. Next, α2 is refined, etc.

The level weights for D
αj, 1 ≤ j ≤ g, are chosen according to the formula cji = 1 + τ(αj – yi), 1 ≤ i ≤ lj, where

cji is the weight of the ith level in D
αj, τ is a tuning parameter, αj is a parameter determining the subset D

αj,
yj is the y coordinate of the ith level in D

αj, lj is the number of levels in D
αj (the levels are indexed from bot�

tom to top), and 1 ≤ j ≤ g. The value of τ is chosen from the interval [0.1, 0.35].
For vertical ellipses and ellipses with mixed orientations, the values of α1, α2, …, αg – 1 are optimized in

a similar fashion to the case of horizontal ellipses.

9. NUMERICAL RESULTS

Ellipses were packed in a square Q with a side length of 3 and in a rectangle R with a width of 3 and
height of 6 units. Thus, R was formed of two squares Q one placed on top of the other. The side length of
the square was set to three, because, in some of the cases considered in this paper, the radius r of circles
packed in Q was such that, when divided by 3, it gave the best known radius of circles packed into a unit
square. Clearly, setting a radius of 0.5 for the circles to be packed in Q is more natural than setting a radius
of 0.1666 (with 6 repeating) for packing in a unit square. Equal ellipses with various parameters were
packed in Q and R.

To optimize packing, we developed a special software code using the library CPLEX 11.2, which makes
it possible to solve problems of the indicated types. The code optimizes packings of (1) only horizontal
ellipses, (2) only vertical ellipses, or (3) orthogonally oriented ellipses. In all three cases, we found the
maximum possible number of ellipses with given parameters that can be packed in a given figure and deter�
mined the positions of the ellipses’ centers and orientations (horizontal or vertical). Since the maximum
possible number of all ellipses was found, it was possible in the third case that all ellipses were either hor�
izontal or vertical or there were ellipses of both types.

The computations were performed on an Intel Core 2 Duo CPU T7300 2.00 GHz computer with 2 GB
RAM run under Windows XP.
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The resulting packings of ellipses were evaluated as follows. For a given r, we packed the maximum pos�
sible number of equal circles of radius r in Q. The resulting packing was compared with the best available
packing of circles of radius r/3 in a unit square. The best available packing densities for circles in a unit
square were denoted by p*, while the known largest numbers of packed circles were denoted by n*. For a
given ellipse eccentricity, the ellipse parameters a and b were calculated so that the area of the ellipse coin�
cided with the area of a circle of radius r. Next, the packing densities for ellipses and circles (with identical
areas) were compared.

Table 2 presents the numerical results obtained for Q and R with various ellipse parameter at the fixed
eccentricity e = 0.74536. Here, the slash symbol (/) is used to separate the results. The following charac�
teristics are given In Table 2:

• The first column contains the semimajor and semiminor axes of the ellipses.

• The second column gives the radii of circles having the same area as that of an ellipse with parameters
indicated in the given line.

• The third column specifies the figures into which ellipses and circles were packed; the results for Q
and R are given in the corresponding lines.

• The fourth column contains the resulting numbers of packed circles of radius r and the correspond�
ing packing densities (n/p).

(a) (b) (c)

(d) (e) (f)

Fig. 3. Packings in R of (a) 13 circles, (b) 12 horizontal ellipses pressed down, (c) 12 vertical ellipses, (d) 4 horizontal and
9 vertical ellipses, (e) 3 horizontal and 10 vertical ellipses, and (f) 12 horizontal ellipses pressed up or down.



www.manaraa.com

1760

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 53  No. 11  2013

GALIEV, LISAFINA

• The fifth column gives the known maximum possible numbers of circles of radius r/3 that can be
packed in a unit square and the corresponding packing densities (n*/p*).

• The sixth column presents the resulting numbers (ng) of packed horizontal ellipses and the corre�
sponding packing density (pg).

• The seventh column contains the resulting numbers (n
v
) of packed vertical ellipses and the corre�

sponding packing densities (p
v
); for packings in Q, the results of this column coincide with those of the

preceding column and, for this reason, are omitted.
• The eighth column gives the resulting numbers of packed orthogonally oriented ellipses and the cor�

responding packing densities.
Note that the numbers of packed ellipses obtained with and without the heuristic (in the latter case, if

that was possible on our computer) turned out to be identical, but the CPU times were usually widely dif�
ferent.

(c) (d)

(a) (b)

Fig. 4. Packings in R of (a) 45 circles, (b) 45 horizontal ellipses, (c) 45 vertical ellipses, and (d) 24 horizontal and 21 ver�
tical ellipses.
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Inspection of Table 2 shows that the resulting numbers of circles packed in Q (and, hence, the packing
density) coincide with the best known results (see Table 13.1 in [5]), except for r = 0.275 and 0.3125.
Moreover, the best known results for r = 0.5, 0.375 and 0.25 are optimal (unimprovable) (see, e.g., [5]).

The number of circles packed in R is everywhere two and more times larger than the number of circles
packed in Q. Based on this result, we conclude that the resulting packings in R are acceptable. The number
of ellipses packed in Q is, as a rule, less than the number of circles (of equal area). For ellipses packed in R,
the numbers of packed ellipses and circles coincide in half of the cases.

The packings of circles in Q were obtained (on the above�mentioned computer) by solving system (4),
(5) without applying the heuristic at radii r ≥ 0.275. Starting at r = 0.25, Q was divided into two parts. In the
case of ellipse packing in the square, the heuristic was not used for ellipse parameters corresponding to
r ≥ 0.375 and was used for r = 0.275 and 0.25.

For circles packed in R, system (4), (5) was solved without applying the heuristic for r ≥ 0.375, while,
for r = 0.275 and 0.25, the heuristic was used. For ellipses packed in R, the heuristic was not used for r =
0.5625 and 0.5, while being used for the other ellipse parameters.

In the case where the radius of circles is r = 0.5625, it was found that 13 circles can be packed in R (see
Fig. 3a). Packings of 12 ellipses were obtained for vertical and horizontal ellipses (see Figs. 3b and 3c,
respectively). In the case of both horizontal and vertical ellipses, 13 ellipses can be packed in R with the
packing density equal to that for 13 circles. Figures 3d and 3e show packings of 13 ellipses with various
ratios of the numbers of horizontal and vertical ellipses.

The introduction of level weights and the pressing of ellipses were found to be useful. More specifically,
Fig. 3b shows the maximum possible number of horizontal ellipses packed in R as obtained with level
weights and the pressing down procedure, while Fig. 3e displays similar results obtained without level
weights. The number of ellipses is identical in both cases. From a practical point of view, however, the
packing in Fig. 3b can be more useful, since it leaves a single large piece in the upper part of R intact, in
contrast to the case depicted in Fig. 3e. This large piece of the rectangle (material) can possibly be used
for something else. When a given number of ellipses are cut off from a strip, the level weights make it pos�
sible to minimize the length of the strip used. The result of packing can depend on whether the ellipses are
pressed up or down, right or left. The packings in R were obtained by pressing the ellipses down via choos�
ing suitable level weights.

Figure 4 presents the resulting packings of (a) 45 circles, (b) 45 horizontal ellipses, (c) 45 vertical
ellipses, and (d) 24 horizontal ellipses and 21 vertical ellipses. The packing densities p are identical in all
these cases. Specifically, p = 0.767, which differs from the best known packing density for circles packed
in the square by at most 0.02.

In the case of packing both horizontal and vertical ellipses, in each considered case (presented in Table 2),
the number of ellipses was no less (and sometimes more) than that for entirely horizontal or vertical
ellipses.

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for his or her remarks and helpful suggestions that improved
this work.

REFERENCES

1. I. Castillo, F. J. Kampos, and J. D. Pinter, “Solving circle packing problems by global optimization: Numerical
results and industrial applications,” Eur. J. Operat. Res. 191, 786–802 (2008).

2. M. Hifi and R. M’Hallah, “A literature review on circle and sphere packing problems: Models and methodolo�
gies,” Adv. Oper. Res. 2009, Article ID 150624, doi: 10.1155/2009/150624.

3. M. Locatelli and M. Raber, “Packing equal circles in a square: A deterministic global optimization approach,”
Discrete Appl. Math. 122, 139–166 (2008).

4. A. Lodi, S. Martello, and M. Monaci, “Two�dimensional packing problems: A survey,” Eur. J. Operat. Res. 141,
241–252 (2002).

5. P. G. Szabó, M. Cs. Marcót, T. Csendes, E. Specht, et al., New Approaches to Circle Packing in a Square with
Program Codes (Springer, Berlin, 2007).

6. Facility Location: Application and Theory, Ed. by H. W. Hamacher and Z. Drezner (Springer, New York, 2004).



www.manaraa.com

1762

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 53  No. 11  2013

GALIEV, LISAFINA

7. R. F. Love, J. G. Morris, and G. O. Wesolowsky, Facilities Location Models and Methods (North�Holland,
Amsterdam, 1988).

8. C. S. ReVelle and H. A. Eiselt, “Location analysis: A synthesis and survey,” J. Operat. Res. 165, 1–19 (2005).

9. Y. Hiragi, “Molecular shape and structure of regular molecular assembles: II. The geometrical conditions for
two dimensional packing of the elliptic molecule,” Bull. Inst. Chem. Res. Kyoto Univ. 56 (4), 170–175 (1978).

10. W. X. Xu and H. S. Chen, “Micro structural characterization of fresh cement paste via random packing of ellip�
soidal cement particles,” Materials Characterization, No. 66, 16–23 (2012).

11. G. Delaney, D. Weaire, S. Hutzler, and S. Murphy, “Random packing of elliptical circles,” Philos. Mag. Lett.
85 (2), 89–96 (2005).

12. L. F. Toth, “Packing of ellipses with continuously distributed area,” J. Discrete Math. 60, 263–267 (1986).

13. W. X. Xu, H. S. Chen, and Z. Lu, “An overlapping detection algorithm for random sequential packing of ellip�
tical particles,” Physica A 390, 2452–2467 (2011).

14. Z. Y. Zhou, D. Pinson, R. P. Zou, and A. B. Yu, “Discrete particle simulation of gas fluidization of ellipsoidal
particles,” Chem. Eng. Sci. 65, 6128–6145 (2011).

15. Sh. I. Galliev, “Computational algorithms for the optimum covering of plane domains by a prescribed number
of ellipses,” Comput. Math. Math. Phys. 35, 609–617 (1995).

16. M. S. Canbolat and M. von Massow, “Planar maximal covering with ellipses,” Comput. Ind. Eng. 57, 201–208
(2009).

17. Sh. Galiev, M. Lisafina, and V. Judin, “Optimization of a multiple covering of a surface taking into account its
relief,” Proceedings of the 3rd International Conference on Optimization and Applications (OPTIMA�2012) Costa
da Caparica, Portugal, September 2012 (Moscow, 2012), pp. 86–90.

Translated by I. Ruzanova



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


